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Optimization Theory

Existence of Optimal Solutions

The set of minima of a real-valued function f over a nonempty set
X, call is X*, is equal to the intersection of X and the level sets
of f that have a common points with X :

X" =MiZo{r € X[f(2) < wm},

where {~x} is any scalar sequence with vy | infyex f(z).
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Existence of Optimal Solutions

Theorem
Weierstrass’ Theorem Consider a closed proper function

f - (_007 OO],

and assume that any one of the following three conditions holds:
(1) dom(f) is bounded.

(2) There exists a scalar 7 such that the level set

{zlf(x) <7}

is nonempty and bounded.
(3) f is coercive.

Then the set of minima of f over R™ is nonempty and compact.
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Partial Minimization of convex functions

Theorem

Consider a function F : R"*™ — (—o0, oc| and the function
f:R" — [—00, 00| defined by

f(.%') = Z.nfz@)?mF(x,z).
Then:

(a) If F is convex, then f is also convex.
(b) We have

P(epi(F)) C epi(f) C cl(P(epi(F))),

where P(-) denotes projection on the space of (x,w), i.e., for
any subset S of R"*" L P(S) = (z,w)|(z, z,w) € S.
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Saddle Point and Minimax Theory

Theorem
Saddle Point: A pair of vectors x* € X and z* € Z is called a
saddle point of ¢ if

o(x*,2) < p(a*,2") < ¢z, 2"),Vae € X,Vz € Z.

minimax equality:

supyezinfrexd(z, z) = infrexsup.czd(x, z).



Optimization Theory

Saddle Point and Minimax Theory

Theorem
A pair (x*,z*) is a saddle point of ¢ if and only if the minimax
equality holds, and x* is an optimal solution of the problem:

minimize sup,cz¢(x,z), subject to x € X,
while z* is an optimal solution of the problem

maximize infyex¢(x,z), subject to z € Z
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Saddle Point and Minimax Theory

Lemma 2.6.1: Let X be a nonempty convex subset of R, let Zbea
nonempty subset of ™, andlet ¢ : X x Z — Rbea function. Assume
that for each z € Z, the function ¢(-,z) : X — R is convex. Then the
function p of Eq. (2.33) is convex.
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Saddle Point and Minimax Theory

Lemma 2.6.2: Let X be a nonempty subset of N2, let Z be a nonempty
convex subset of ®™, and let ¢ : X x Z — R be a function. Ass{lme
that for each © € X, the function —¢(z,) : Z — R is closed ‘and
convex. Then the function g : R™ + [~o0, 00| given by

q(p) = {w+wp}, pe®m,

inf
(. w)€epi(p)

where p is given by Eq. {2.33), satisfies

a(p) = {ifi’;ex o(z, ) g ﬁ ; ? (2.36)

Furthermore, we have ¢* = w* if and only if the minimax equaht;y
(2.26) holds. :
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Saddle Point and Minimax Theory

Proposition 2.6.2: (Minimax Theorem I) Let X and Z be nonem-

pty convex subsets of ®* and R™, respectively, and let ¢: XxZR
be a function. Assume that for each z € Z, the function ¢(+,2) : X
R is convex, and for each z € X, the ﬁmctlon —¢{z,) : Z— Ris
closed and convex. Assume further that

- inf sup ¢(z, z) < co.
zeX zeZ

Then, the minimax. equality holds, i.e.,

f.;.sup inf ¢(z,2) = inf sup ¢(x, 2},
czeZxeX zeX zeZ

if and only if the functibnb of Eq. (2.33) is lower éemiﬁoﬁtinuous
at u = 0, Le, p(0) < liminfi oo p(ur) for all sequences {uy} with
Up = 0. . .
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Saddle Point and Minimax Theory

Proposition 2.6.3: (Minimax Theorem II} Let X and Z be
nonempty convex subsets of R% and R™, respectively, and let ¢ :
X x Z — R be a function. Assume that for each z € Z, the func-
tion ¢(-,2} : X — R is convex, and for each z € X, the function
—¢(z,+) : Z — R is closed and convex. Assume further that

—o0 < inf sup ¢(z, 2),
TEX 22
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Saddle Point and Minimax Theory

and that 0 lies in the relative interior of the effective domain of
the function p of Eq. (2.33). Then, the minimax equality holds,
ie,

sup inf ¢(z,z) = inf sup ¢(z, 2),

reZ zeX zeX ze€Z
and the supremum over Z in the left-hand gide is ﬁnite and is
attained. Furthermore, the set of z € Z attaining this supremum
is compact if and only if O lies in the interior of the effective
domain of p.
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EX 1

Saddle Points in Two Dimensions

Consider a function ¢ of two real variables x and z taking values in
compact intervals of X and Z, respectively. Assume that for each
z € Z, the function ¢(, z) is minimized over X at a unique point
denoted Z(z). Similarly, assume that for each z € X, the function
¢(z,-) is maximized over Z at a unique point denoted Z(x).
Assume further that the functions Z(z) and Z(x) are continuous
over Z and X, respectively. Show that ¢ has a saddle point
(x*,2*). Use this to investigate the existence of saddle points of
é(w,2) = 22 + 22 over X = [0,1] and Z = [0, 1].
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Solution 1

We consider a function ¢ of two real variables x and z taking values in compact
intervals X and Z, respectively. We assume that for each z € Z, the function
(-, z) is minimized over X at a unique point denoted Z(z), and for each x € X,
the function ¢(z, ) is maximized over Z at a unique point denoted z(z),

#(z) = arg Izlélg oz, 2), 3x) = argrgsagccj)(:r: z).

Consider the composite function f : X +— X given by
f(x) = :?:(2(.19))

which is a continuous function in view of the assumption that the functions &(z)
and z(z) are continuous over Z and X, respectively. Assume that the compact
interval X is given by [a,b]. We now show that the function f has a fixed point,
i.e., there exists some z* € [a, b] such that

flz®)y=2".
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Solution 1

Define the function g : X — X by
9(2) = J(z) - z.
Assume that f(a) > a and f(b) < b, since otherwise we are done. We have
gla) = fla) —a >0,

g(b) = f() = b < 0.

Since g is a continuous function, the preceding relations imply that there exists
some z* € (a,b) such that g(z*) =0, i.e., f(z") = 2". Hence, we have

%(2(3:*)) =a".
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Solution 1

Denoting 2(z*) by z*, we get
" = #(2%), 2" =2(z"). (2.24)
By definition, a pair (7, %) is a saddle point if and only if
max §(7, z) = $(Z,z) = min ¢(z, 2),

or equivalently, if T = 2(Z) and Z = 2(T). Therefore, from Eq. (2.24), we see that
(z*,2%) is a saddle point of ¢.

We now consider the function ¢(x,2) = 2* + 2% over X = [0,1] and Z =
[0,1]. For each z € [0, 1], the function ¢(:, z) is minimized over [0, 1] at a unique
point #(z) = 0, and for each z € [0,1], the function ¢(x,-) is maximized over
[0,1] at a unique point 2(z) = 1. These two curves intersect at (z*,z") = (0, 1),
which is the unique saddle point of ¢.
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Ex 2

Saddle Points of Quadratic Functions

Consider a quadratic function ¢ : X x Z — R of the form
d(x,2) = 2'Qr +2'Dz — 2Rz,

where ) and R are symmetric positive semidefinite n x n and

m X m matrices, respectively, D is some n X m matrix, and X and
Z are subsets of R™ and R, respectively. Derive conditions under
which ¢ has at least one saddle point.
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Solution 2

Let X and Z be closed and convex sets. Then, for each z € Z, the function
t. : N" — (—o0, c0| defined by

t.(x) = { $(x,z) ifreX,

lo's) otherwise,

is closed and convex in view of the assumption that @ is a positive semidefinite
symmetric matrix. Similarly, for each = € X, the function r; : R™ — (—oc0, 0]

defined by
r.(z) = { —¢lz,z) ifze€ 2,
) otherwise,

is closed and convex in view of the assumption that R is a positive semidefinite
symmetric matrix. Hence, Assumption 2.6.1 is satisfied. Let also Assumptions
2.6.2 and 2.6.3 hold, i.e,

inf sup ¢(z, z) < o0,

nf zegcﬁ( 1 %) ,
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Solution 2

and
—oo < sup inf ¢(z, 2).
zegzex¢( ,7)
By the positive semidefiniteness of (), it can be seen that, for each z € Z, the
recession cone of the function ¢. is given by

R:, = Rx NN(Q)N{y |y Dz <0},

where Rx is the recession cone of the convex set X and N(Q) is the null space
of the matrix ). Similarly, for each z € Z, the constancy space of the function
t, is given by

L., = Lx NN(@Q)n{y |y Dz =0},

where Lx is the lineality space of the set X. By the positive semidefiniteness of
R, for each x € X, it can be seen that the recession cone of the function r, is
given by

R,, = Rz NN(R)N{y | 2'Dy > 0},
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Solution 2

where Rz is the recession cone of the convex set Z and N(R) is the null space of
the matrix R. Similarly, for each x € X, the constancy space of the function r,
is given by

L,, =Lz NN(R)N{y |+ Dy =0},

where Lz is the lineality space of the set Z.

If
() Be. ={0}. and [ Rr, = {0}, (2.25)
z2E€EZ zeX
then it follows from the Saddle Point Theorem part (a), that the set of saddle
points of ¢ is nonempty and compact. [In particular, the condition given in Eq.
(2.25) holds when @ and R are positive definite matrices, or if X and Z are
compact.]
Similarly, if

(B =) Lts and () Rep = () Lras

z€Z z€EZ z€X zeX

then it follows from the Saddle Point Theorem part (b), that the set of saddle
points of ¢ is nonempty.
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Ex 3

Convex-concave functions and saddle points

We say the function f: R" x R — R is convex-concave if f(x,z)
is a concave function of z, for each fixed =, and a convex function
of x, for each fixed z. We also require its domain to have the
product form domf = A x B, where A C R and B C R™ are
convex.

(a) Give a second-order condition for a twice differentiable
function f: R x ™ — R to be convex-concave, interms of
its Hessian V2 f(z, 2).

(b) Suppose that f: R™ x R™ — R is convex-concave and
differentiable, with Vf(Z, 2) = 0. Show that the saddle point
property holds: for all z, z, we have

f(@,2 < f(2,2) < f(z,2).
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Show that this implies that f satisfies the strong max-min
property:

supzinfy f(z,z) = infysup. f(z, 2)

(and their common value is f(Z, 2)).

(c) Now suppose that f: R™ x R — R is differentiable, but not
necessarily convex-concave, and the saddle-point property
holds at %, 2:

f(@,2 < f(2,2)) < f(=,2).
for all z, z. Show that Vf(%, 2) = 0.
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Solution 3

(a) The condition follows directly from the second-order conditions for convexity and

=

concavity: it is

Vief(,2) =0,  Vif(z,z) <0,
for all x,z. In terms of sz, this means that its 1,1 block is positive semidefinite,
and its 2,2 block is negative semidefinite.

Let us fix 2. Since Vi f(Z,2) = 0 and f(xz,2) is convex in z, we conclude that &
minimizes f(z,Z) over z, i.e., for all z, we have

f(#,2) < f(=, 2).

This is one of the inequalities in the saddle-point condition. We can argue in the
same way about Z. Fix &, and note that V. f(Z, Z) = 0, together with concavity of
this function in z, means that Z maximizes the function, i.e., for any x we have

f(&.2) = f(%,2).

To establish this we argue the same way. If the saddle-point condition holds, then
Z minimizes f(x, Z) over all z. Therefore we have V fz(Z,2) = 0. Similarly, since Z
maximizes f(Z,z) over all z, we have Vf.(Z,2) = 0.
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